The iron-binding protein Dps confers hydrogen peroxide stress resistance to Campylobacter jejuni.

نویسندگان

  • Takahiko Ishikawa
  • Yoshimitsu Mizunoe
  • Shun-ichiro Kawabata
  • Akemi Takade
  • Mine Harada
  • Sun Nyunt Wai
  • Shin-ichi Yoshida
چکیده

We identified and characterized the iron-binding protein Dps from Campylobacter jejuni. Electron microscopic analysis of this protein revealed a spherical structure of 8.5 nm in diameter, with an electron-dense core similar to those of other proteins of the Dps (DNA-binding protein from starved cells) family. Cloning and sequencing of the Dps-encoding gene (dps) revealed that a 450-bp open reading frame (ORF) encoded a protein of 150 amino acids with a calculated molecular mass of 17,332 Da. Amino acid sequence comparison indicated a high similarity between C. jejuni Dps and other Dps family proteins. In C. jejuni Dps, there are iron-binding motifs, as reported in other Dps family proteins. C. jejuni Dps bound up to 40 atoms of iron per monomer, whereas it did not appear to bind DNA. An isogenic dps-deficient mutant was more vulnerable to hydrogen peroxide than its parental strain, as judged by growth inhibition tests. The iron chelator Desferal restored the resistance of the Dps-deficient mutant to hydrogen peroxide, suggesting that this iron-binding protein prevented generation of hydroxyl radicals via the Fenton reaction. Dps was constitutively expressed during both exponential and stationary phase, and no induction was observed when the cells were exposed to H(2)O(2) or grown under iron-supplemented or iron-restricted conditions. On the basis of these data, we propose that this iron-binding protein in C. jejuni plays an important role in protection against hydrogen peroxide stress by sequestering intracellular free iron and is expressed constitutively to cope with the harmful effect of hydrogen peroxide stress on this microaerophilic organism without delay.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Campylobacter jejuni Dps protein binds DNA in the presence of iron or hydrogen peroxide.

Iron is an essential cofactor for many enzymes; however, this metal can lead to the formation of reactive oxygen species. Ferritin proteins bind and oxidize Fe(2+) to Fe(3+), storing this metal in a nonreactive form. In some organisms, a particular subfamily of ferritins, namely, Dps proteins, have the ability to bind DNA. Here we show that the Campylobacter jejuni Dps has DNA binding activity ...

متن کامل

An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni.

Microaerophiles like Campylobacter jejuni must resist oxidative stresses during transmission or infection. Growth of C. jejuni 81116 under iron limitation greatly increased the expression of two polypeptides of 26 and 55 kDa. The identification of these proteins by N-terminal amino acid sequencing showed both to be involved in the defense against oxidative stress. The 55-kDa polypeptide was ide...

متن کامل

Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor.

Expression of the peroxide stress genes alkyl hydroperoxide reductase (ahpC) and catalase (katA) of the microaerophile Campylobacter jejuni is repressed by iron. Whereas iron repression in gram-negative bacteria is usually carried out by the Fur protein, previous work showed that this is not the case in C. jejuni, as these genes are still iron repressed in a C. jejuni fur mutant. An open readin...

متن کامل

The impairment of methylmenaquinol:fumarate reductase affects hydrogen peroxide susceptibility and accumulation in Campylobacter jejuni

The methylmenaquinol:fumarate reductase (Mfr) of Campylobacter jejuni is a periplasmic respiratory (redox) protein that contributes to the metabolism of fumarate and displays homology to succinate dehydrogenase (Sdh). Since chemically oxidized redox-enzymes, including fumarate reductase and Sdh, contribute to the generation of oxidative stress in Escherichia coli, we assessed the role of Mfr in...

متن کامل

Iron-responsive gene regulation in a campylobacter jejuni fur mutant.

The expression of iron-regulated systems in gram-negative bacteria is generally controlled by the Fur protein, which represses the transcription of iron-regulated promoters by using Fe2+ as a cofactor. Mutational analysis of the Campylobacter jejuni fur gene was carried out by generation of a set of mutant copies of fur which had a kanamycin or chloramphenicol resistance gene introduced into th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 185 3  شماره 

صفحات  -

تاریخ انتشار 2003